用户名: 密码: 验证码:
Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes
详细信息    查看全文
文摘
Understanding and controlling exciton鈥損honon interactions in carbon nanotubes has important implications for producing efficient nanophotonic devices. Here we show that laser vaporization-grown carbon nanotubes display ultranarrow luminescence line widths (120 渭eV) and well-resolved acoustic phonon sidebands at low temperatures when dispersed with a polyfluorene copolymer. Remarkably, we do not observe a correlation of the zero-phonon line width with 13C atomic concentration, as would be expected for pure dephasing of excitons with acoustic phonons. We demonstrate that the ultranarrow and phonon sideband-resolved emission spectra can be fully described by a model assuming extrinsic acoustic phonon localization at the nanoscale, which holds down to 6-fold narrower spectral line width compared to previous work. Interestingly, both exciton and acoustic phonon wave functions are strongly spatially localized within 5 nm, possibly mediated by the copolymer backbone, opening future opportunities to engineer dephasing and optical bandwidth for applications in quantum photonics and cavity optomechanics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700