用户名: 密码: 验证码:
Stimulus-Responsiveness and Drug Release from Porous Silicon Films ATRP-Grafted with Poly(N-isopropylacrylamide)
详细信息    查看全文
文摘
In this report, we employ surface-initiated atom transfer radical polymerization (SI-ATRP) to graft a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), of controlled thickness from porous silicon (pSi) films to produce a stimulus-responsive inorganic鈥搊rganic composite material. The optical properties of this material are studied using interferometric reflectance spectroscopy (IRS) above and below the lower critical solution temperature (LCST) of the PNIPAM graft polymer with regard to variation of pore sizes and thickness of the pSi layer (using discrete samples and pSi gradients) and also the thickness of the PNIPAM coatings. Our investigations of the composite鈥檚 thermal switching properties show that pore size, pSi layer thickness, and PNIPAM coating thickness critically influence the material鈥檚 thermoresponsiveness. This composite material has considerable potential for a range of applications including temperature sensors and feedback controlled drug release. Indeed, we demonstrate that modulation of the temperature around the LCST significantly alters the rate of release of the fluorescent anticancer drug camptothecin from the pSi-PNIPAM composite films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700