用户名: 密码: 验证码:
A Kinetic Study on the Cu(0)-Catalyzed Ullmann-Type Nucleophilic Aromatic Substitution C–O Coupling of Potassium Phenolate and 4-Chloropyridine
详细信息    查看全文
文摘
A parametric study of the factors that influence C鈥揙 bond formation reactions has been carried out to elucidate the mechanism by which copper mediates the Ullmann-type nucleophilic aromatic substitution (SNAr) of 4-chloropyridine with potassium phenolate. Process conditions such as temperature, reactant concentrations, catalyst concentration, and amounts of solubilizing additive were varied to obtain the kinetic data. Both reactant and product concentration were found to have a significant effect on the reaction rate. An increased concentration of 18-crown-6 ether, used as an alkali metal solubilizing agent for potassium phenolate, proved to be effective only for low conversions, whereas an inhibited phenolate complexation at high product concentrations was observed. An apparent activation energy of 55 kJ路mol鈥? was observed for a Cu0 catalyst in the liquid-phase coupling reaction in a temperature range of 100鈥?50 掳C. It was demonstrated that a Langmuir鈥揌inshelwood kinetic model is mechanistically most likely to be obeyed for this type of surface reaction. A maximum adsorption enthalpy on Cu was found for the product, 4-phenoxypyridine, followed by the reactants phenolate and 4-chloropyridine, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700