用户名: 密码: 验证码:
Strategy for Increasing the Electrode Density of Microelectrode Arrays by Utilizing Bipolar Behavior of a Metallic Film
详细信息    查看全文
文摘
Recessed microelectrode arrays and plane-recessed microelectrode arrays (MEAs) with different center-to-center distances are designed and fabricated using lithographic technology. By comparing electrochemical behavior of plane-recessed MEAs with that of recessed MEAs, bipolar phenomenon of the metallic plane film is revealed. Redox cycling can occur when the top plane electrode was floating; that is, the bipolar behavior of the unbiased top plane electrode may perform locally as a collector and enlarge the concentration gradient of Ru(NH3)6Cl3 and thus promote an apparent generator/collector electrochemical response of the microdisk electrode in the MEAs configuration. By utilizing the bipolar behavior, the center-to-center distance of MEAs required for achieving steady-state current could decrease without favoring at the same time the overlapping of diffusion layers of microelectrodes, and thus, the electrode density of MEAs can be increased. Therefore, the bipolar behavior of the metallic film can increase both the current response of an individual microdisk and the electrode density of microdisks without losing the characteristics of a microelectrode. By just fabricating a thin layer of metallic film on the plane and leaving it floating without potential control, recessed MEAs used in this work can achieve the increase of detection sensitivity by more than 1 order of magnitude.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700