用户名: 密码: 验证码:
Responsive Supramolecular Polymer Metallogel Constructed by Orthogonal Coordination-Driven Self-Assembly and Host/Guest Interactions
详细信息    查看全文
文摘
An emerging strategy for the fabrication of advanced supramolecular materials is the use of hierarchical self-assembly techniques wherein multiple orthogonal interactions between molecular precursors can produce new species with attractive properties. Herein, we unify the spontaneous formation of metal鈥搇igand bonds with the host/guest chemistry of crown ethers to deliver a 3D supramolecular polymer network (SPN). Specifically, we have prepared a highly directional dipyridyl donor decorated with a benzo-21-crown-7 moiety that undergoes coordination-driven self-assembly with a complementary organoplatinum acceptor to furnish hexagonal metallacycles. These hexagons subsequently polymerize into a supramolecular network upon the addition of a bisammonium salt due to the formation of [2]pseudorotaxane linkages between the crown ether and ammonium moieties. At high concentrations, the resulting 3D SPN becomes a gel comprising many cross-linked metallohexagons. Notably, thermo- and cation-induced gel鈥搒ol transitions are found to be completely reversible, reflecting the dynamic and tunable nature of such supramolecular materials. As such, these results demonstrate the structural complexity that can be obtained when carefully controlling multiple interactions in a hierarchical fashion, in this case coordination and host/guest chemistry, and the interesting dynamic properties associated with the materials thus obtained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700