用户名: 密码: 验证码:
Fluorine-Modified Porous Graphene as Membrane for CO2/N2 Separation: Molecular Dynamic and First-Principles Simulations
详细信息    查看全文
文摘
It is demonstrated that the fluorine-modified porous graphene membrane has excellent selectivity for CO2/N2 separation by using molecular dynamic (MD) simulations. We also investigated in detail the mechanism of the fluorine-modified porous graphene membrane for CO2/N2 separation by using first-principles simulations. We find that the diffusion barriers for CO2 and N2 to pass through the pore-22 (with 22 carbon atoms drilled out) graphene membrane are relatively small, which indicates that the pore-22 has a low selectivity for CO2/N2 separation. After fluorine modification, the diffusion barrier for CO2 to pass through decreases to 0.029 eV, while the diffusion barrier for N2 greatly increases to 0.116 eV. Therefore, N2 gets more difficult, while CO2 gets easier to penetrate through the fluorine-modified pore-22. The fluorine-modified pore-22 porous graphene shows a great enhancement of selectivity for CO2/N2 separation, which is consistent with the MD results. Our studies show that first-principles simulations can be well used to understand the MD results and propose an economical and efficient means of separating CO2 from N2, which may be useful for designing new concept membranes for gas separation, like CO/N2 and SO2/N2 separations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700