用户名: 密码: 验证码:
Control of Chemoselectivity by Coordinated Water and Relative Size of Ligands to Metal Cations of Lewis Acid Catalysts for Cycloaddition of an Oxirane Derivative to an Aldehyde: Theoretical and Experi
详细信息    查看全文
文摘
The role played by Lewis acid catalysts in the selective cleavages of C鈥揙 and C鈥揅 bonds of oxirane derivatives with aldehydes is investigated both theoretically and experimentally. According to the different chemoselectivities, various catalysts are divided into four series: C鈥揙 selectivity, both, C鈥揅 selectivity, and none, respectively. The involvement of coordinated water molecules is crucial to rationalize the experimental observation of C鈥揅 selectivity for the Ni(ClO4)2路6H2O-catalyzed reaction, which is supported by experiment on changing originally unreactive Ni(OTf)2 to be an effective catalyst by mixing with water. Furthermore, the steric hindrance from the anion in Lewis acid and the water molecule have significant influence on the efficiency of catalysts. A steric parameter, 伪, defined as the relative ratio of ligand size to radius of the center metal cation, gives a general picture to understand the selectivities of various Lewis acid catalysts. The ineffective M(OTf)2 type catalysts have remarkable steric hindrance with 伪 > 4.5. Large cations (RM > 74 pm) relative to their surrounding ligands with 伪 < 4 prefer the C鈥揙 bond cleavage path, while small cations (RM < 70 pm) with 伪 < 4.5 lead to C鈥揅 bond breaking. An understanding of the relationship between selectivity and Lewis acid catalysts may guide the design of more selective and versatile Lewis acid catalysts for organic synthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700