用户名: 密码: 验证码:
Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis
详细信息    查看全文
文摘
The first-principles and thermodynamic calculations were performed to study structural stability, thermodynamic properties, and Li+ migration mechanism of the superionic conductor Li10GeP2S12 (LGPS). Our calculations show that the zigzag and parallel arrangements of GeS44鈥?/sup> and P(1)S43鈥?/sup> units form three types of stable structures. Among them, zigzag-type structures with 2鈥? Li+ occupied in the Li4 position were found to be the most stable. Our thermodynamic calculations show that LGPS may be stable at >276 K when configuration and vibration entropies are considered based on disordered arrangement of GeS44鈥?/sup> and P(1)S43鈥?/sup> units, and partially occupied Li+. Based on the calculation for minimum energy paths, we found that Li+ migration along the c axis may be more favorable than that in the ab plane, indicating a very weak anisotropy for Li+ migration of LGPS. These structural and mechanistic studies are helpful to design a novel superionic conductor with high performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700