用户名: 密码: 验证码:
Influence of Diffusivity and Sorption on Helium and Hydrogen Separations in Hydrocarbon, Silicon, and Fluorocarbon-Based Polymers
详细信息    查看全文
文摘
The permeability鈥搒electivity upper bounds show that perfluoropolymers have uniquely different separation characteristics than hydrocarbon-based polymers. For separating helium from hydrogen, these differences are particularly dramatic. At a given helium permeability, the upper bound defined by perfluoropolymers has helium/hydrogen selectivities that are 2.5 times higher than that of the upper bound defined by hydrocarbon-based polymers. Robeson hypothesized that these differences in transport properties resulted from the unusual sorption relationships of gases in perfluoropolymers compared to hydrocarbon-based polymers, and this paper seeks to test this hypothesis experimentally. To do so, the gas permeability, sorption, and diffusion coefficients were determined at 35 掳C for hydrogen and helium in a series of hydrocarbon-, silicon-, and fluorocarbon-based polymers. Highly or completely fluorinated polymers have separation characteristics above the upper-bound for helium/hydrogen separation because they maintain good diffusivity selectivities for helium over hydrogen and they have helium/hydrogen sorption selectivities much closer to unity than those of hydrocarbon-based samples. The silicon-based polymer had intermediate sorption selectivities between those of hydrocarbon-based polymers and perfluoropolymers. Comparisons of hydrogen and helium sorption data in the literature more broadly extend the conclusion that helium/hydrogen sorption selectivity is rather different in hydrocarbon and fluorocarbon-based media.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700