用户名: 密码: 验证码:
Converse Piezoelectric Effect in Cellulose I Revealed by Wide-Angle X-ray Diffraction
详细信息    查看全文
文摘
The converse piezoelectric effect in cellulose I was studied by exposing thin pine wood slices to an electric field. Macroscopically, a strong extension of wood was observed in its transverse anatomical direction (grain angle 90°), perpendicular to the direction of the electric field. The same effect, albeit to a lesser extent, was observed for specimens with a 45° grain angle, whereas no measurable dimensional change was observed for specimens with grain oriented parallel to the testing direction (0° grain angle). The measured extension in the transverse direction was proportional to the intensity of the applied electric field and amounted to 0.0278% on average at a field intensity of 1 MV m−1, which results in a piezoelectric charge constant of 278 pm V−1. At the nanoscale, changes in the cellulose crystallites due to the applied electric field were studied by means of wide-angle X-ray diffraction using the same specimens as in macroscopic experiments. Significant radial shifts of the scattering intensity peak attributed to the cellulose 200 crystallographic plane toward smaller scattering angles were observed, while the electric field was applied. These peak shifts were attributed to an increase in the spacing of the 200 crystallographic planes of cellulose I. At an electric field intensity of 1 MV m−1, a crystallite strain ε200 normal to the 200 reflection plane of 0.2% was estimated from Bragg’s law.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700