用户名: 密码: 验证码:
In Silico Prediction of Chemical Acute Oral Toxicity Using Multi-Classification Methods
详细信息    查看全文
文摘
Chemical acute oral toxicity is an important end point in drug design and environmental risk assessment. However, it is difficult to determine by experiments, and in silico methods are hence developed as an alternative. In this study, a comprehensive data set containing 12鈥?04 diverse compounds with median lethal dose (LD50) was compiled. These chemicals were classified into four categories, namely categories I, II, III and IV, based on the criterion of the U.S. Environmental Protection Agency (EPA). Then several multiclassification models were developed using five machine learning methods, including support vector machine (SVM), C4.5 decision tree (C4.5), random forest (RF), 魏-nearest neighbor (kNN), and na茂ve Bayes (NB) algorithms, along with MACCS and FP4 fingerprints. One-against-one (OAO) and binary tree (BT) strategies were employed for SVM multiclassification. Performances were measured by two external validation sets containing 1678 and 375 chemicals, separately. The overall accuracy of the MACCS-SVMOAO model was 83.0% and 89.9% for external validation sets I and II, respectively, which showed reliable predictive accuracy for each class. In addition, some representative substructures responsible for acute oral toxicity were identified using information gain and substructure frequency analysis methods, which might be very helpful for further study to avoid the toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700