用户名: 密码: 验证码:
Copper Sulfide Self-Assembly Architectures with Improved Photothermal Performance
详细信息    查看全文
文摘
Copper chalcogenide nanomaterials are promising photothermal materials for establishing novel diagnostic and therapeutic methods owing to the low cost but high photothermal transduction efficiency. Further progresses of the correlated technologies greatly depend on the efforts on design and construction of novel nanostructures. In this paper, we demonstrate a facile one-pot route for constructing CuS nanostructures in aqueous media via a spontaneous assembly process. In the presence of polyvinylpyrrolidone (PVP) as the capping agents, a decomposition of Cu(CH3COSH)x precursors is induced by ammonia, which produces hexagonal CuS nanoparticles (NPs) with the diameter around 22 nm. The primary CuS NPs greatly tend to self-assembly into one-dimensional structures, which are triggered by short-range anisotropic dipolar attraction and enforced by long-range isotropic electrostatic repulsion. The further fusion of the assembled NPs generates 480 脳 50 nm2 CuS nanorods. Because the formation of nanorods enhances the internanorod van der Waals attraction, the nanorods finally self-assembly into shuttle-like bundles in micrometer size. In comparison to isolated NPs, the regular CuS assembly structures exhibit improved molar extinction coefficient up to 9.7 脳 1016 cm鈥? M鈥? by shortening the distance of neighboring CuS NPs and therewith generating new electronic structures of the CuS indirect transition. Consequently, better photothermal performance is achieved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700