用户名: 密码: 验证码:
Porous Three Dimensional Arrays of Plasmonic Nanoparticles
详细信息    查看全文
  • 作者:Haobijam Johnson Singh ; Ambarish Ghosh
  • 刊名:The Journal of Physical Chemistry C
  • 出版年:2012
  • 出版时间:September 13, 2012
  • 年:2012
  • 卷:116
  • 期:36
  • 页码:19467-19471
  • 全文大小:257K
  • 年卷期:v.116,no.36(September 13, 2012)
  • ISSN:1932-7455
文摘
Plasmonic interactions in a well-defined array of metallic nanoparticles can lead to interesting optical effects, such as local electric field enhancement and shifts in the extinction spectra, which are of interest in diverse technological applications, including those pertaining to biochemical sensing and photonic circuitry. Here, we report on a single-step wafer scale fabrication of a three-dimensional array of metallic nanoparticles whose sizes and separations can be easily controlled to be anywhere between fifty to a few hundred nanometers, allowing the optical response of the system to be tailored with great control in the visible region of the spectrum. The substrates, apart from having a large surface area, are inherently porous and therefore suitable for optical sensing applications, such as surface enhanced Raman scattering, containing a high density of spots with enhanced local electric fields arising from plasmonic couplings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700