用户名: 密码: 验证码:
Kinetics of n-Butanol Partial Oxidation to Butyraldehyde over Lanthanum鈥揟ransition Metal Perovskites
详细信息    查看全文
  • 作者:Bing-Shiun Jiang ; Ray Chang ; Yi-Chen Hou ; Yu-Chuan Lin
  • 刊名:Industrial & Engineering Chemistry Research
  • 出版年:2012
  • 出版时间:October 31, 2012
  • 年:2012
  • 卷:51
  • 期:43
  • 页码:13993-13998
  • 全文大小:335K
  • 年卷期:v.51,no.43(October 31, 2012)
  • ISSN:1520-5045
文摘
Partial oxidation of butanol to butyraldehyde over a series of LaBO3 (B = Mn, Fe, and Co) perovskites was investigated in a continuous fixed-bed system under ambient pressure. Physicochemical properties of catalysts were characterized by X-ray diffraction, H2 temperature-programmed reduction, and temperature-programmed oxidation. LaMnO3 was more favorable to be reduced and reoxidized than LaFeO3 and LaCoO3. Catalytic results have indicated that all catalysts show similar butanol and oxygen conversions and over 90% butyraldehyde selectivities below 300 掳C. Side reactions such as butanol or butyraldehyde combustion could be enhanced at high temperatures. To gain an in-depth understanding of perovskite鈥檚 chemistry involved, kinetic analysis has been carried out. Eight reaction pathways based on the Mars鈥搗an Krevelen redox cycle were proposed. These pathways have been lumped and associated with the Langmuir鈥揌inshelwood鈥揌ougen鈥揥atson formalism to derive a set of rate equations. Parameter estimation via nonlinear regression of derived rate equations has shown that surface reaction, evolving chemisorbed butanol and oxygen, is probably rate-determining. The estimated activation energy of LaMnO3 (15.0 kcal/mol) by assuming surface reaction as the rate-limiting step was the lowest among all perovskites. This can be ascribed to the better redox property of LaMnO3, thereby decreasing the energy barrier in butanol partial oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700