用户名: 密码: 验证码:
Long-Term Balanced Fertilization Decreases Arbuscular Mycorrhizal Fungal Diversity in an Arable Soil in North China Revealed by 454 Pyrosequencing
详细信息    查看全文
文摘
A balanced fertilization can increase crop yields partly due to stimulated microbial activities and growths. In this study, we investigated arbuscular mycorrhizal fungi (AMF) in arable soils to determine the optimal practices for an effective fertilization. We used pyrosequencing-based approach to study AMF diversity, as well as their responses to different long-term (>20 years) fertilizations, including OM (organic manure) and mix chemical fertilizers of NP (nitrogen鈥損hosphorus), NK (nitrogen鈥損otassium), and NPK (nitrogen鈥損hosphorus-potassium). Results revealed that 124鈥?98 of 18S rRNA gene fragments were dominated by Glomeromycota with 59鈥?11 sequences, generating 70 operational taxonomic units (OTUs), of which the three largest families were Glomeraceae, Gigasporaceae and Acaulosporaceae. In Control and NK plots, AMF diversity and richness significantly decreased under long-term P fertilizations, such as NP, NPK, and OM. Concomitantly, the AMF community structure shifted. Supported by canonical correspondence analysis, we hereby propose that long-term balanced fertilization, especially P fertilizer with additional N fertilizer, helps the build-up of soil nutrients. Consequently, some AMF community constituents are sacrificed, propelled by the self-regulation of plant-AMF-microbes system, resulting in an agro-ecosystem with a better sustainability. This knowledge would be valuable toward better understandings of AMF community in agro-ecosystem, and long-term ecosystem benefits of the balanced fertilization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700