用户名: 密码: 验证码:
Supercritical or Compressed CO2 as a Stimulus for Tuning Surfactant Aggregations
详细信息    查看全文
  • 作者:Jianling Zhang ; Buxing Han
  • 刊名:Accounts of Chemical Research
  • 出版年:2013
  • 出版时间:February 19, 2013
  • 年:2013
  • 卷:46
  • 期:2
  • 页码:425-433
  • 全文大小:577K
  • 年卷期:v.46,no.2(February 19, 2013)
  • ISSN:1520-4898
文摘
Surfactant assemblies have a wide range of applications in areas such as the chemical industry, material science, biology, and enhanced oil recovery. From both theoretical and practical perspectives, researchers have focused on tuning the aggregation behaviors of surfactants. Researchers commonly use solid and liquid compounds such as cosurfactants, acids, salts, and alcohols as stimuli for tuning the aggregation behaviors. However, these additives can present economic and environmental costs and can contaminate or modify the product. Therefore researchers would like to develop effective methods for tuning surfactant aggregation with easily removable, economical, and environmentally benign stimuli.
Supercritical or compressed CO2 is abundant, nontoxic, and nonflammable and can be recycled easily after use. Compressed CO2 is quite soluble in many liquids, and the solubility depends on pressure and temperature. Therefore researchers can continuously influence the properties of liquid solvents by controlling the pressure or temperature of CO2. In this Account, we briefly review our recent studies on tuning the aggregation behaviors of surfactants in different media using supercritical or compressed CO2.
Supercritical or compressed CO2 serves as a versatile regulator of a variety of properties of surfactant assemblies. Using CO2, we can switch the micellization of surfactants in water, adjust the properties of reverse micelles, enhance the stability of vesicles, and modify the switching transition between different surfactant assemblies. We can also tune the properties of emulsions, induce the formation of nanoemulsions, and construct novel microemulsions. With these CO2-responsive surfactant assemblies, we have synthesized functional materials, optimized chemical reaction conditions, and enhanced extraction and separation efficiencies.
Compared with the conventional solid or liquid additives, CO2 shows some obvious advantages as an agent for modifying surfactant aggregation. We can adjust the aggregation behaviors continuously by pressure and can easily remove CO2 without contaminating the product, and the method is environmentally benign. We can explain the mechanisms for these effects on surfactant aggregation in terms of molecular interactions. These studies expand the areas of colloid and interface science, supercritical fluid science and technology, and chemical thermodynamics. We hope that the work will influence other fundamental and applied research in these areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700