用户名: 密码: 验证码:
Enhancement of Arsenic Adsorption during Mineral Transformation from Siderite to Goethite: Mechanism and Application
详细信息    查看全文
  • 作者:Huaming Guo ; Yan Ren ; Qiong Liu ; Kai Zhao ; Yuan Li
  • 刊名:Environmental Science & Technology (ES&T)
  • 出版年:2013
  • 出版时间:January 15, 2013
  • 年:2013
  • 卷:47
  • 期:2
  • 页码:1009-1016
  • 全文大小:422K
  • 年卷期:v.47,no.2(January 15, 2013)
  • ISSN:1520-5851
文摘
Synthesized siderite was used to remove As(III) and As(V) from water solutions under anoxic conditions and oxic conditions. Results showed that As adsorption on synthetic siderite under anoxic conditions was around 10 mg/g calculated with Langmuir isotherm. However, the calculated As adsorption on synthetic siderite under oxic conditions ranged between 115 and 121 mg/g, which was around 11 times higher than that under anoxic conditions. It was found that 75% siderite was transformed into goethite during oxic adsorption. However, synthetic goethite had lower As adsorption capacity than siderite under oxic conditions, although its adsorption capacity was a little higher than siderite under anoxic conditions. It suggested that the coexistence of goethite and siderite bimineral during mineral transformation probably contributed to the robust adsorption capacity of siderite under oxic conditions. Results of extended X-ray absorption fine structure (EXAF) spectroscopy indicated both As(III) and As(V) formed inner-sphere complexes on the surface of As-treated solid regardless of substrates, including the bidentate binuclear corner-sharing (2C) complexes and the monodentate mononuclear corner-sharing (1V) complexes. Monodenate (1V) and bidentate (2C) complexes would be related to high As adsorption capacity of siderite under oxic conditions. It showed that more Fe atoms were coordinated with As atom in the monodentate complexes and the bidentate complexes of As(V)/As(III)-treated siderite under oxic conditions, in comparison with As(V)/As(III)-treated siderite under anoxic conditions and As(V)/As(III)-treated goethite. Calcinations of natural siderite resulting in the coexistence of goethite and siderite greatly increased As adsorption on the solid, which confirmed that the coexistence of bimineral during mineral transformation from siderite to goethite greatly enhanced As adsorption capacity of siderite adsorbent. The observation can be applied for modification of natural siderite for As removal from high As waters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700