用户名: 密码: 验证码:
Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes
详细信息    查看全文
文摘
We present evidence for Cp* being a sacrificial placeholder ligand in the [Cp*IrIII(chelate)X] series of homogeneous oxidation catalysts. UV鈥搗is and 1H NMR profiles as well as MALDI-MS data show a rapid and irreversible loss of the Cp* ligand under reaction conditions, which likely proceeds through an intramolecular inner-sphere oxidation pathway reminiscent of the reductive in situ elimination of diolefin placeholder ligands in hydrogenation catalysis by [(diene)MI(L,L鈥?]+ (M = Rh and Ir) precursors. When oxidatively stable chelate ligands are bound to the iridium in addition to the Cp*, the oxidized precursors yield homogeneous solutions with a characteristic blue color that remain active in both water- and CH-oxidation catalysis without further induction period. Electrophoresis suggests the presence of well-defined Ir-cations, and TEM-EDX, XPS, 17O NMR, and resonance-Raman spectroscopy data are most consistent with the molecular identity of the blue species to be a bis-渭-oxo di-iridium(IV) coordination compound with two waters and one chelate ligand bound to each metal. DFT calculations give insight into the electronic structure of this catalyst resting state, and time-dependent simulations agree with the assignments of the experimental spectroscopic data. [(cod)IrI(chelate)] precursors bearing the same chelate ligands are shown to be equally effective precatalysts for both water- and CH-oxidations using NaIO4 as chemical oxidant.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700