用户名: 密码: 验证码:
Comparative Study of Upconverting Nanoparticles with Various Crystal Structures, Core/Shell Structures, and Surface Characteristics
详细信息    查看全文
文摘
Upconverting nanoparticles (UCNPs) have been studied as novel bioimaging probes owing to the absence of autofluorescence and excellent photostability. For practical applications, biocompatible UCNPs with high upconversion efficiency, bright luminescence, and good colloidal stability are desirable. Herein, we report a quantitative and systematic study on the upconversion luminescence from a set of NaYF4:Yb3+,Er3+-based nanoparticles by varying crystal structures, core/shell structures, and surface ligands. Upconversion luminescent properties in colloidal solution and at the single-particle level were examined. Hexagonal-phase core/shell UCNPs exhibited the most intense luminescence among various structures, while the excellent photostability was observed in all different types of UCNPs. To optimize the biomedical imaging capability of UCNPs, various surface coating strategies were tested. By quantitative spectroscopic measurements of surface-modified UCNPs in water, it was suggested that encapsulation with polyethylene glycol (PEG)-phospholipid was found to be effective in retaining both upconversion luminescence intensity and dispersibility in aqueous environment. Finally, UCNPs with different crystal structures were applied and compared in live cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700