用户名: 密码: 验证码:
Highly Efficient Preparation of Multiscaled Quantum Dot Barcodes for Multiplexed Hepatitis B Detection
详细信息    查看全文
文摘
Both disease diagnosis and therapeutic treatments require real-time information from assays capable of identifying multiple targets. Among various multiplexed biochips, multiplexed suspension assays of quantum dot (QD)-encoded microspheres are highly advantageous. This arises from the excellent fluorescent properties of the QDs incorporated into these microspheres, thus allowing them to serve as 鈥淨D barcodes鈥? QD barcodes can be prepared through various approaches. However, the formulation of improved synthetic techniques that may allow more efficient preparation of QD barcodes with better encoding accuracy still remains a challenge. In this report, we describe a combined membrane emulsification鈥搒olvent evaporation (MESE) approach for the efficient preparation of QD barcodes. By combining the advantages of the MESE approach in controlling the barcode sizes with accurate encoding, a three-dimensional barcode library that integrates the signals of the forward scattering, fluorescence 1, and fluorescence 4 channels was established via flow cytometry. The five indexes of hepatitis B viruses were chosen as diagnostic targets to examine the feasibility of the QD barcodes in high-throughput diagnosis. On the basis of showing that singleplex detection is feasible, we demonstrate the ability of these QD barcodes to simultaneously and selectively detect a multitude of diverse biomolecular targets.

Keywords:

quantum dots; microspheres; Shirasu porous glass membrane emulsification; flow cytometry; suspension immunoassay

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700