用户名: 密码: 验证码:
A Highly Efficient and Visualized Method for Glycan Enrichment by Self-Assembling Pyrene Derivative Functionalized Free Graphene Oxide
详细信息    查看全文
文摘
Protein glycosylation plays key roles in many biological processes, such as cell growth, differentiation, and cell鈥揷ell recognition. Therefore, global structure profiling of glycans is very important for investigating the biological significance and roles of glycans in disease occurrence and development. Mass spectrometry (MS) is currently the most powerful technique for structure analysis of oligosaccharides, but the limited availability of glycan/glycoproteins from natural sources restricts the wide adoption of this technique in large-scale glycan profiling. Though various enrichment methods have been developed, most methods relay on the weak physical affinity between glycans and adsorbents that yields insufficient enrichment efficiency. Furthermore, the lack of monitoring the extent/completeness of enrichment may lead to incomplete enrichment unless repeated sample loading and prolonged incubation are adopted, which limits sample handling throughput. Here, we report a rapid, highly efficient, and visualized approach for glycan enrichment using 1-pyrenebutyryl chloride functionalized free graphene oxide (PCGO). In this approach, glycan capturing is achieved by reversible covalent bond formation between the hydroxyl groups of glycans and the acyl chloride groups on graphene oxide (GO) introduced by 蟺鈥撓€ stacking of 1-pyrenebutyryl chloride on the GO surface. The multiple hydroxyl groups of glycans lead to cross-linking and self-assembly of free PCGO sheets into visible aggregation within 30 s, therefore achieving simple visual monitoring of the enrichment process. Improved enrichment efficiency is achieved by the large specific surface area of free PCGO and heavy functionalization of highly active 1-pyrenebutyryl chloride. Application of this method in enrichment of standard oligosaccharides or N-glycans released from glycoproteins results in remarkably increased MS signal intensity (approximately 50 times), S/N, and number of glycoform identified.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700