用户名: 密码: 验证码:
Suppression of Intersite Charge Transfer in Charge-Disproportionated Perovskite YCu3Fe4O12
详细信息    查看全文
文摘
A novel iron perovskite YCu3Fe4O12 was synthesized under high pressure and high temperature of 15 GPa and 1273 K. Synchrotron X-ray and electron diffraction measurements have demonstrated that this compound crystallizes in the cubic AA鈥?sub>3B4O12-type perovskite structure (space group Im3̅, No. 204) with a lattice constant of a = 7.30764(10) 脜 at room temperature. YCu3Fe4O12 exhibits a charge disproportionation of 8Fe3.75+ 鈫?3Fe5+ + 5Fe3+, a ferrimagnetic ordering, and a metal-semiconductor-like transition simultaneously at 250 K, unlike the known isoelectronic compound LaCu3Fe4O12 that currently shows an intersite charge transfer of 3Cu2+ + 4Fe3.75+ 鈫?3Cu3+ + 4Fe3+, an antiferromagnetic ordering, and a metal鈥搃nsulator transition at 393 K. This finding suggests that intersite charge transfer is not the only way of relieving the instability of the Fe3.75+ state in the A3+Cu2+3Fe3.75+4O12 perovskites. Crystal structure analysis reveals that bond strain, rather than the charge account of the A-site alone, which is enhanced by large A3+ ions, play an important role in determining which of intersite charge transfer or charge disproportionation is practical.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700