用户名: 密码: 验证码:
Oxidation of Tertiary Amine-Derivatized Surfaces To Control Protein Adhesion
详细信息    查看全文
文摘
Selective oxidation of 蠅-tertiary amine self-assembled thiol monolayers to tertiary amine N-oxides is shown to transform the adhesion of model proteins lysozyme and fibrinogen upon them. Efficient preparation of both secondary and tertiary linker amides as judged by X-ray photoelectron spectroscopy (XPS) and water droplet contact angle was achieved with an improved amide bond formation on gold quartz crystal microbalance (QCM) sensors using 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl hexafluorophosphate methanaminium uronium (HATU). Oxidation with hydrogen peroxide was similarly assessed, and adhesion of lysozyme and fibrinogen from phosphate buffered saline was then assayed by QCM and imaged by AFM. Tertiary amine-functionalized sensors adsorbed multilayers of aggregated lysozyme, whereas tertiary amine N-oxides and triethylene glycol-terminated monolayers are consistent with small protein aggregates. The surface containing a dimethylamine N-oxide headgroup and ethyl secondary amide linker showed the largest difference in adsorption of both proteins. Oxidation of tertiary amine decorated surfaces therefore holds the potential for selective deposition of proteins and cells through masking and other patterning techniques.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700