用户名: 密码: 验证码:
From Two-Dimensional to Three-Dimensional at the Air/Water Interface: The Self-Aggregation of the Acridine Dye in Mixed Monolayers
详细信息    查看全文
文摘
The formation of well-defined supramolecular structures on the nanoscopic scale is a fundamental step in nanotechnology. The fine control of the layer-by-layer growth of the supramolecular assemblies at interfaces is most desirable. The collapse of a mixed monolayer composed of two surfactants in an equimolar ratio (the organic dye N-10-dodecyl acridine (DAO) and stearic acid (SA)) is analyzed herein. The collapse process of the DAO/SA mixed monolayer has been monitored using surface pressure鈥搈olecular area (蟺鈥揂) and surface potential isotherms, UV鈥搗isible reflection spectroscopy, polarization-modulated infrared reflection鈥揳bsorption spectroscopy (PM-IRRAS), Brewster angle microscopy (BAM), and synchrotron-based in situ X-ray reflectivity (XRR) measurements. The collapse of the DAO/SA mixed monolayer leads to an ordered trilayer. The growth of anisotropic 2D domains of micrometric size is observed during the formation of the trilayer, related to the ordering of the acridine polar headgroups. The trilayer is organized with the first and third monolayers displaying the polar headgroups pointing to the aqueous subphase, whereas the intermediate layer displays the polar headgroups pointing to the air. The trilayer is stabilized by the strong self-aggregation acridine dye group of the DAO molecule. The controlled transition from a monolayer to a trilayer described herein is proposed as a model for further interfacial supramolecular structures of tunable thickness comprising organic dyes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700