用户名: 密码: 验证码:
High-Mobility Transistors Based on Single Crystals of Isotopically Substituted Rubrene-d28
详细信息    查看全文
文摘
We have performed a comprehensive study of chemical synthesis, crystal growth, crystal quality, and electrical transport properties of isotopically substituted rubrene-d28 single crystals (D-rubrene, C42D28). Using a modified synthetic route for protonated-rubrene (H-rubrene, C42H28), we have obtained multigram quantities of rubrene with deuterium incorporation approaching 100%. We found that the vapor-grown D-rubrene single crystals, whose high qualities were confirmed by X-ray diffraction and atomic force microscopy, maintained the remarkable transport properties originally manifested by H-rubrene crystals. Specifically, field-effect hole mobility above 10 cm2 V鈥? s鈥? was consistently achieved in the vacuum-gap transistor architecture at room temperature, with an intrinsic band-like transport behavior observed over a broad temperature range; maximum hole mobility reached 45 cm2 V鈥? s鈥? near 100 K. Theoretical analysis provided estimates of the density and characteristic energy of shallow and deep traps presented in D-rubrene crystals. Overall, the successful synthesis and characterization of rubrene-d28 paves an important pathway for future spin-transport experiments in which the H/D isotope effect on spin lifetime can be examined in the testbed of rubrene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700