用户名: 密码: 验证码:
Microwave鈥揌ydrothermal Crystallization of Polymorphic MnO2 for Electrochemical Energy Storage
详细信息    查看全文
文摘
We report a coupled microwave鈥揾ydrothermal process to crystallize polymorphs of MnO2 such as 伪-, 尾-, and 纬-phase samples with plate-, rod-, and wirelike shapes, by a controllable redox reaction in MnCl2鈥揔MnO4 aqueous solution system. MnCl2鈥揔MnO4 redox reaction system was for the first time applied to MnO2 samples under the coupled microwave鈥揾ydrothermal conditions, which shows clear advantages such as shorter reaction time, well-crystallized polymorphic MnO2, and good electrochemical performances as electrode materials for lithium ion batteries. For comparison, we also did separate reactions with hydrothermal only and microwave only in our designed MnCl2鈥揔MnO4 aqueous system. The present results indicate that MnCl2鈥揔MnO4 reaction system can selectively lead to 伪-, 尾-, and 纬-phase MnO2, and the as-crystallized MnO2 samples can show interesting electrochemical performances for both lithium-ion batteries and supercapacitors. Electrochemical measurements show that the as-crystallized MnO2 supercapacitors have Faradaic reactivity sequence 伪- > 纬- > 尾-MnO2 upon their tunnel structures, the intercalation鈥揹eintercalation reactivity of these MnO2 cathodes follows the order 纬- > 伪- > 尾-phase, and the conversion reactivity of these MnO2 anodes follows the order 纬- > 伪- > 尾-phase. MnCl2鈥揔MnO4 reaction system can also lead to the mixed-phase MnO2 (尾- and 纬-MnO2), which can provide better anode performances for lithium-ion batteries. The current work deepens the fundamental understanding of several aspects of physical chemistry, for example, the chemical reaction controllable synthesis, crystal structure selection, electrochemical property improvement, and electrochemical reactivity, as well as their correlations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700