用户名: 密码: 验证码:
Stabilization of 9/10-Fold Structure in Bismuth Selenide at High Pressures
详细信息    查看全文
文摘
We report joint theoretical and experimental research on the high-pressure structures of bismuth selenide (Bi2Se3) up to 50 GPa. Our first-principles structure prediction via calypso methodology meets our high-pressure X-ray diffraction experiments performed in diamond anvil cell. We established that the ambient-pressure rhombohedral phase transforms to a monoclinic C2/m structure at 9.8 GPa, and then to a monoclinic C2/c structure at 12.4 GPa. Above 22.1 GPa, we were able to identify that Bi2Se3 develops into a novel 9/10-fold structure, which was not taken by its other family members Bi2Te3 and Sb2Te3. The large differences in atomic core and electronegativity of Bi and Se are suggested to be the physical origin of the stabilization of this 9/10-fold structure. Our research work allows us to reveal a rich chemistry of Bi in the formation of 6, 7, 8, and 9/10-fold covalent bond with Se at elevated pressures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700