用户名: 密码: 验证码:
In Vivo Silicon-Based Flexible Radio Frequency Integrated Circuits Monolithically Encapsulated with Biocompatible Liquid Crystal Polymers
详细信息    查看全文
文摘
Biointegrated electronics have been investigated for various healthcare applications which can introduce biomedical systems into the human body. Silicon-based semiconductors perform significant roles of nerve stimulation, signal analysis, and wireless communication in implantable electronics. However, the current large-scale integration (LSI) chips have limitations in in vivo devices due to their rigid and bulky properties. This paper describes in vivo ultrathin silicon-based liquid crystal polymer (LCP) monolithically encapsulated flexible radio frequency integrated circuits (RFICs) for medical wireless communication. The mechanical stability of the LCP encapsulation is supported by finite element analysis simulation. In vivo electrical reliability and bioaffinity of the LCP monoencapsulated RFIC devices are confirmed in rats. In vitro accelerated soak tests are performed with Arrhenius method to estimate the lifetime of LCP monoencapsulated RFICs in a live body. The work could provide an approach to flexible LSI in biointegrated electronics such as an artificial retina and wireless body sensor networks.

Keywords:

biointegrated electronics; flexible CMOS integrated circuits; silicon nanomembrane; biocompatible packaging; liquid crystal polymers; monolithic encapsulation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700