用户名: 密码: 验证码:
Thermodynamic Analysis of Hydrogen Generation from Methanol鈥揊ormic Acid鈥揝team Autothermal System
详细信息    查看全文
  • 作者:Zebao Rui ; Hongbing Ji
  • 刊名:Energy & Fuels
  • 出版年:2013
  • 出版时间:September 19, 2013
  • 年:2013
  • 卷:27
  • 期:9
  • 页码:5449-5458
  • 全文大小:569K
  • 年卷期:v.27,no.9(September 19, 2013)
  • ISSN:1520-5029
文摘
This work examines the H2 production from methanol (MeOH)鈥揻ormic acid (FA)鈥搒team (H2O) system (FSRM) by thermodynamic analysis using the Gibbs free energy minimization method. The compounds considered in FSRM are CH3OH, HCOOH, H2O, CO2, CO, H2, HCOOCH3, HCHO, and CH3OCH3 and together with or without CH4 and C (graphite). The addition of FA lowers the enthalpy of the system and favors the heat recycle. Thermal-neutral (TN) conditions are obtained, at which the heat released from exothermic reactions makes up exactly for the requirement of the endothermic reactions. For the case with consideration of CH4 and C formation, C and CH4 formation is thermodynamically dominated at a low temperature (<400 掳C). High temperature is favorable for H2 production and can effectively inhibit CH4 and carbon formation, but it also leads to high CO yield. High H2O/MeOH ratio can effectively suppress CO, CH4, and C formation and improve H2 mole fraction at 200, 400, and 600 掳C. Although the increase in FA/MeOH ratio leads to low equilibrium H2 mole fraction and high CO concentration, TN conditions can be realized for wide range of H2O/MeOH and FA/MeOH ratios. For the case without consideration of CH4 and C formation, which are only applicable to situations in which byproducts C and CH4 formation are limited, the thermodynamic data may be more agreeable with the reported experimental results. Under TN conditions, the H2 mole fraction can be around 0.51 with a CO mole fraction as low as 0.001 for H2O/MeOH = 2 and FA/MeOH = 5 or 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700