用户名: 密码: 验证码:
Giant Stretchability and Reversibility of Tightly Wound Helical Carbon Nanotubes
详细信息    查看全文
文摘
There is a surging interest in 3D graphitic nanostructures which possess outstanding properties enabling them to be prime candidates for a new generation of nanodevices and energy-absorbing materials. Here we study the stretching instability and reversibility of tightly wound helical carbon nanotubes (HCNTs) by atomistic simulations. The intercoil van der Waals (vdW) interaction-induced flattening of HCNT walls prior to loading is constrained by the defects coordinated for the curvature formation of helices. The HCNTs exhibit extensive stretchability in the range from 400% to 1000% as a result of two distinct deformation mechanisms depending on the HCNT size. For small HCNTs tremendous deformation is achieved by domino-type partial fracture events, whereas for large HCNTs this is accomplished by stepwise buckling of coils. The formation and fracture of edge-closed graphene ribbons occur at lower temperatures, while at elevated temperatures the highly distributed fracture realizes a phenomenal stretchability. The results of cyclic stretching-reversing simulations of large HCNTs display pronounced hysteresis loops, which produce large energy dissipation via full recovery of buckling and vdW bondings. This study provides physical insights into the origins of high ductility and superior reversibility of hybrid CNT structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700