用户名: 密码: 验证码:
Carbon Nanodots-Catalyzed Chemiluminescence of Luminol: A Singlet Oxygen-Induced Mechanism
详细信息    查看全文
文摘
The catalyzed luminol chemiluminescence (CL) in a strongly alkaline environment has been rarely induced by singlet oxygen (1O2). This paper reports that cetyltrimethyl ammonium bromide passivated carbon nanodots (CTAB-CDs), prepared by the hydrothermal treatment of fullerene in the presence of CTAB, can be used as excellent catalysts to dramatically enhance the CL intensity of the luminol鈥揌2O2 system in NaOH medium owing to their unique surface property. More importantly, this CL enhancement takes place mainly through the intermediate of 1O2, which follows a different mechanism from traditional reports. The CL spectra, UV鈥搗is spectra, electron paramagnetic resonance (EPR) spectra, transmission electron microscopy (TEM) images before and after the CL reaction, and the effects of various free radical scavengers on the CL intensity were conducted to identify the possible 1O2-participating CL enhancement mechanism. It was demonstrated that the CL enhancement by CTAB-CDs originated from the processes of the catalysis of CDs on the electron-transfer and the breakdown of H2O2. Both processes produced a great amount of 1O2 on the surface of CTAB-CDs, and then the reaction of 1O2 with luminol resulted in an unstable endoperoxide, which could rapidly decompose into the excited state 3-aminophthalate anions (3-APA*), leading to the enhanced CL at 440 nm. The important features of this CDs-catalyzed CL will not only enrich traditional luminol CL mechanism in strongly alkaline conditions but also open up a new route to study this novel carbon nanomaterial, which may broaden the applications in a large variety of fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700