用户名: 密码: 验证码:
Reversible Transformation of Nanostructured Polymer Particles
详细信息    查看全文
文摘
A reversible transformation of overall shape and internal structure as well as surface composition of nanostructured block copolymer particles is demonstrated by solvent-adsorption annealing. Polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) pupa-like particles with PS and P4VP lamellar domains alternatively stacked can be obtained by self-assembly of the block copolymer under 3D soft confinement. Chloroform, a good solvent for both blocks, is selected to swell and anneal the pupa-like particles suspended in aqueous media. Reversible transformation between pupa-like and onion-like structures of the particles can be readily tuned by simply adjusting the particle/aqueous solution interfacial property. Interestingly, poly(vinyl alcohol) (PVA) concentration in the aqueous media plays a critical role in determining the particle morphology. High level of PVA concentration is favorable for pupa-like morphology, while extremely low concentration of PVA is favorable for the formation of onion-like particles. Moreover, the stimuli-response behavior of the particles can be highly suppressed through selective growth of Au nanoparticles within the P4VP domains. This strategy provides a new concept for the reversible transformation of nanostructured polymer particles, which will find potential applications in the field of sensing, detection, optical devices, drug delivery, and smart materials fabrication.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700