用户名: 密码: 验证码:
Tethered PEG Crowdedness Determining Shape and Blood Circulation Profile of Polyplex Micelle Gene Carriers
详细信息    查看全文
文摘
Surface modification by poly(ethylene glycol) (PEG) onto gene carrier prepared through the electrostatic assembly of pDNA and polycation (polyplex) is a widely acknowledged strategy to advance their systemic application. In this regard, PEG crowdedness on the polyplex surface should give important contribution in determining blood circulation property; however its accurate quantification has never been demonstrated. We report here the first successful determination of PEG crowdedness for PEGylated polyplexes (polyplex micelle) formed from PEG鈥損oly(l-lysine) block copolymers (PEG鈥揚Lys) and plasmid DNA (pDNA). Tethered PEG chains were found to adopt mushroom and even squeezed conformation by modulating PEG crowdedness through PLys segment length. Energetic analysis was conducted on the polyplex micelle to elucidate effect of PEG crowdedness on shape and clarify its essential role in regulating packaging structure of pDNA within the polyplex micelle. Furthermore, the PEG crowdedness significantly correlated to blood retention profile, approving its critical role on both shape and systemic circulation property.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700