用户名: 密码: 验证码:
Laser-Induced Solid-Phase Doped Graphene
详细信息    查看全文
文摘
There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide (SiC) substrate including a dopant source driven by pulsed laser irradiation. This method provides in situ direct growth of doped graphene on an insulating SiC substrate without a transfer step. A numerical simulation on the temperature history of the SiC surface during laser irradiation reveals that the surface temperature of SiC can be accurately controlled to grow nitrogen-doped graphene from the thermal decomposition of nitrogen-doped SiC. Laser-induced solid-phase doped graphene is highly promising for the realization of graphene-based nanoelectronics with desired functionalities.

Keywords:

solid-phase synthesis; nitrogen-doped graphene; laser; silicon carbide

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700