用户名: 密码: 验证码:
Degradation Mechanisms of Platinum Nanoparticle Catalysts in Proton Exchange Membrane Fuel Cells: The Role of Particle Size
详细信息    查看全文
文摘
Five membrane-electrode assemblies (MEAs) with different average sizes of platinum (Pt) nanoparticles (2.2, 3.5, 5.0, 6.7, and 11.3 nm) in the cathode were analyzed before and after potential cycling (0.6 to 1.0 V, 50 mV/s) by transmission electron microscopy. Cathodes loaded with 2.2 and 3.5 nm catalyst nanoparticles exhibit the following changes during electrochemical cycling: (i) substantial broadening of the size distribution relative to the initial size distribution, (ii) presence of coalesced particles within the electrode, and (iii) precipitation of submicron-sized particles with complex shapes within the membrane. In contrast, cathodes loaded with 5.0, 6.7, and 11.3 nm size catalyst nanoparticles are significantly less prone to the aforementioned effects. As a result, the electrochemically active surface area (ECA) of MEA cathodes loaded with 2.2 and 3.5 nm nanoparticle catalysts degrades dramatically within 1000 cycles of operation, while the electrochemically active surface area of MEA cathodes loaded with 5.0, 6.7, and 11.3 nm nanoparticle catalysts appears to be stable even after 10鈥?00 cycles. The loss in MEA performance for cathodes loaded with 2.2 and 3.5 nm nanoparticle catalysts appears to be due to the loss in electrochemically active surface area concomitant with the observed morphological changes in these nanoparticle catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700