用户名: 密码: 验证码:
Computation-Ready, Experimental Metal鈥揙rganic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
详细信息    查看全文
文摘
Experimentally refined crystal structures for metal鈥搊rganic frameworks (MOFs) often include solvent molecules and partially occupied or disordered atoms. This creates a major impediment to applying high-throughput computational screening to MOFs. To address this problem, we have constructed a database of MOF structures that are derived from experimental data but are immediately suitable for molecular simulations. The computation-ready, experimental (CoRE) MOF database contains over 4700 porous structures with publically available atomic coordinates. Important physical and chemical properties including the surface area and pore dimensions are reported for these structures. To demonstrate the utility of the database, we performed grand canonical Monte Carlo simulations of methane adsorption on all structures in the CoRE MOF database. We investigated the structural properties of the CoRE MOFs that govern methane storage capacity and found that these relationships agree well with those derived recently from a large database of hypothetical MOFs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700