用户名: 密码: 验证码:
One-Step Electrochemical Deposition of Hierarchical CuS Nanostructures on Conductive Substrates as Robust, High-Performance Counter Electrodes for Quantum-Dot-Sensitized Solar Cells
详细信息    查看全文
文摘
An ideal counter electrode, with high electrocatalytic activity, high performance stability, and applicable fabrication simplicity, is essential to give full play to the advantages of quantum-dot-sensitized solar cells (QDSSCs) such as high theoretical efficiency and simple synthetic procedure. Herein, we report a facile one-step electrochemical deposition approach for the growth of hierarchical covellite (CuS) nanostructures on conductive glass substrates. The as-synthesized copper sulfide can be employed directly as a robust, low-cost, and high-efficiency counter electrode without any post-treatments for QDSSCs filled with aqueous sulfide/polysulfide (S2鈥?/sup>/Sn2鈥?/sup>) electrolyte. The morphology and structure of the well-crystalline, strongly substrate-adhesive hierarchical CuS nanostructured film have been studied by X-ray and electron-based characterizations. QDSSC using this newly synthesized CuS as counter electrode achieves a higher power conversion efficiency of 4.32% than the one applying cuprous sulfide (Cu2S) on brass substrate (4.08%) or platinum counter electrode (2.85%). Furthermore, this CuS counter electrode shows a high and consistent electrocatalytic activity toward polysulfide reduction confirmed by the electrochemical measurements, destining the improved photovoltaic performance and superior stability of the corresponding QDSSC device.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700