用户名: 密码: 验证码:
Shape-Controlled Paclitaxel Nanoparticles with Multiple Morphologies: Rod-Shaped, Worm-Like, Spherical, and Fingerprint-Like
详细信息    查看全文
文摘
Although many nanocarriers have been developed to encapsulate paclitaxel (PTX), the drug loading and circulation time in vivo always are not ideal because of its rigid 鈥渂rickdust鈥?molecular structure. People usually concentrate their attention on the spherical nanocarriers, here paclitaxel nanoparticles with different geometries were established through the chemical modification of PTX, nanoprecipitation, and core-matched cargos. Previously we have developed rod-shape paclitaxel nanocrystals using block copolymer, pluronic F127. Unfortunately, the pharmacokinetic (PK) profile of PTX nanocrystals is very poor. However, when PTX was replaced by its prodrug, the geometry of the nanoparticles changed from rod-shaped to worm-like. The worm-like nanoparticles can be further changed to spherical nanoparticles using the nanoprecipitation method, and changed to fingerprint-like nanoparticles upon the addition of the core-matched PTX. The nanoparticles with nonspherical morphologies, including worm-like nanoparticles and fingerprint-like nanoparticles, offer significant advantages in regards to key PK parameters in vivo. More important, in this report the application of the core-matching technology in creating a core-matched environment capable of controlling the in vivo PK of paclitaxel was demonstrated, and it revealed a novel technique platform to construct nanoparticles and improve the poor PK profiles of the drugs.

Keywords:

geometry; paclitaxel; worm-like; fingerprint-like; pharmacokinetics; circulation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700