用户名: 密码: 验证码:
Plasmonic Hybridization Induced Trapping and Manipulation of a Single Au Nanowire on a Metallic Surface
详细信息    查看全文
文摘
Hybridization in the narrow gaps between the surface plasmon polaritons (SPPs) along a metal surface and the localized surface plasmons on metallic nano-objects strongly enhance the electromagnetic field. Here, we employ plasmonic hybridization to achieve dynamic trapping and manipulation of a single metallic nanowire on a flat metal surface. We reveal that the plasmonic hybridization achieved by exciting plasmonic tweezers with a linearly polarized laser beam could induce strong trapping forces and large rotational torques on a single metallic nanowire. The position and orientation of the nanowire could dynamically be controlled by the hybridization-enhanced nonisotropic electric field in the gap. Experimental results further verify that a single Au nanowire could robustly be trapped at the center of an excited SPP field by the induced forces and then rotated by the torques. Finally, a plasmonic swallow tail structure is built to demonstrate its potential in the fabrication of lab-on-a-chip plasmonic devices.

Keywords:

plasmonic hybridization; plasmonic tweezers; dynamic manipulation; Au nanowire

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700