用户名: 密码: 验证码:
Thermally Induced Percolational Transition and Thermal Stability of Silver Nanowire Networks Studied by THz Spectroscopy
详细信息    查看全文
文摘
Great demand toward flexible optoelectronic devices finds metal nanowires (NWs) the most promising flexible transparent conducting material with superior mechanical properties. However, ultrathin metal nanowires suffer from relatively poor thermal stability and sheet conductance, attributed to the poor adhesivity of the ohmic contact between nanowires. Thermal heating and annealing at 200 掳C increase the conductivity of the metal network, but prolonged annealing accelerates the breakage of NWs near the NW junction and the formation of Ag droplets. In this study, the thermal stability of silver NW (AgNW) films is investigated through the in situ measurements of sheet resistance and terahertz (THz) conductivity. With the improved ohmic contact at the NW junctions by heating, a characteristic transition from the subpercolative to percolative network is observed by in situ THz spectroscopy. It is found that stamp-transferred graphene incorporated with a near-percolative AgNW network can dramatically enhance the thermal stability of the graphene鈥揂gNW (GAgNW) hybrid film. In both in situ measurements, little variation of physical parameters in GAgNW film is observed for up to 3 h of annealing. The presented results offer the potential of graphene-incorporated metal nanowire film as a highly conductive electrode that also has high thermal stability and excellent transparency for next-generation electronics and optoelectronics on flexible substrates.

Keywords:

transparent electrode; silver nanowires; graphene; terahertz spectroscopy; thermal stability

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700