用户名: 密码: 验证码:
Air Stable p-Doping of WSe2 by Covalent Functionalization
详细信息    查看全文
文摘
Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe2 via NOx chemisorption at 150 掳C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict the formation of various WSe2鈥?i>x鈥?i>yOxNy species both on the surface and interface between layers upon chemisorption reaction. Ab initio simulations corroborate our spectroscopy results in identifying the energetically favorable complexes, and predicting WSe2:NO at the Se vacancy sites as the predominant dopant species. A maximum hole concentration of 鈭?019 cm鈥? is obtained from XPS and electrical measurements, which is found to be independent of WSe2 thickness. This degenerate doping level facilitates 5 orders of magnitude reduction in contact resistance between Pd, a common p-type contact metal, and WSe2. More generally, the work presents a platform for manipulating the electrical properties and band structure of TMDCs using covalent functionalization.

Keywords:

layered materials; covalent binding; NO2; chemisorption; doping

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700