用户名: 密码: 验证码:
Study on the Resistance Distribution at the Contact between Molybdenum Disulfide and Metals
详细信息    查看全文
文摘
Contact resistance hinders the high performance of electrical devices, especially devices based on two-dimensional (2D) materials, such as graphene and transition metal dichalcogenide. To engineer contact resistance, understanding the resistance distribution and carrier transport behavior at the contact area is essential. Here, we developed a method that can be used to obtain some key parameters of contact, such as transfer length (Lt), sheet resistance of the 2D materials beneath the contacting metal (Rsh), and contact resistivity between the 2D materials and the metal electrode (蟻c). Using our method, we studied the contacts between molybdenum disulfide (MoS2) and metals, such as titanium and gold, in bilayer and few-layered MoS2 devices. Especially, we found that Rsh is obviously larger than the sheet resistance of the same 2D materials in the channel (Rch) in all the devices we studied. With the increasing of the back-gate voltage, Lt increases and Rsh, 蟻c, Rch, and the contact resistance Rc decrease in all the devices we studied. Our results are helpful for understanding the metal鈥揗oS2 contact and improving the performances of MoS2 devices.

Keywords:

MoS2; FET; contact resistance; two-dimensional materials; transfer length

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700