用户名: 密码: 验证码:
Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures
详细信息    查看全文
文摘
The near-field effects of noble metal nanoparticles can be utilized to enhance the performance of inorganic/organic photosensing devices, such as solar cells and photodetectors. In this work, we developed a well-controlled fabrication strategy to incorporate Au nanostructures into HgTe quantum dot (QD)/ZnO heterojunction photodiode photodetectors. Through an electrostatic immobilization and dry transfer protocol, a layer of Au nanorods with uniform distribution and controllable density is embedded at different depths in the ZnO layer for systematic comparison. More than 80 and 240% increments of average short-circuit current density (Jsc) are observed in the devices with Au nanorods covered by 鈭?.5 and 鈭?.5 nm ZnO layers, respectively. A periodic finite-difference time-domain (FDTD) simulation model is developed to analyze the depth-dependent property and confirm the mechanism of plasmon-enhanced light absorption in the QD layer. The wavelength-dependent external quantum efficiency spectra suggest that the exciton dissociation and charge extraction efficiencies are also enhanced by the Au nanorods, likely due to local electric field effects. The photodetection performance of the photodiodes is characterized, and the results show that the plasmonic structure improves the overall infrared detectivity of the HgTe QD photodetectors without affecting their temporal response. Our fabrication strategy and theoretical and experimental findings provide useful insight into the applications of metal nanostructures to enhance the performance of organic/inorganic hybrid optoelectronic devices.

Keywords:

quantum dot; surface plasmon; heterojunction; exciton

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700