用户名: 密码: 验证码:
Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance Ultracapacitors
详细信息    查看全文
文摘
Graphene has attracted a lot of attention for ultracapacitor electrodes because of its high electrical conductivity, high surface area, and superb chemical stability. However, poor volumetric capacitive performance of typical graphene-based electrodes has hindered their practical applications because of the extremely low density. Herein we report a scalable synthesis method of holey graphene (h-Graphene) in a single step without using any catalysts or special chemicals. The film made of the as-synthesized h-Graphene exhibited relatively strong mechanical strength, 2D hole morphology, high density, and facile processability. This scalable one-step synthesis method for h-Graphene is time-efficient, cost-efficient, environmentally friendly, and generally applicable to other two-dimensional materials. The ultracapacitor electrodes based on the h-Graphene show a remarkably improved volumetric capacitance with about 700% increase compared to that of regular graphene electrodes. Modeling on individual h-Graphene was carried out to understand the excellent processability and improved ultracapacitor performance.

Keywords:

scalable synthesis; facile processability; holey graphene; dense graphene electrode; ultracapacitor; supercapacitor; volumetric capacitance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700