用户名: 密码: 验证码:
A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors
详细信息    查看全文
文摘
Organic stretchable electronics have attracted extensive scientific and industrial interest because they can be stretched, twisted, or compressed, enabling the next-generation of organic electronics for human/machine interfaces. These electronic devices have already been described for applications such as field-effect transistors, photovoltaics, light-emitting diodes, and sensors. High-performance stretchable electronics, however, currently still involve complicated processing steps to integrate the substrates, semiconductors, and electrodes for effective performance. Herein, we describe a facile method to efficiently identify suitable semiconducting polymers for organic stretchable transistors using soft contact lamination. In our method, the various polymers investigated are first transferred on an elastomeric poly(dimethylsiloxane) (PDMS) slab and subsequently stretched (up to 100%) along with the PDMS. The polymer/PDMS matrix is then laminated on source/drain electrode-deposited Si substrates equipped with a PDMS dielectric layer. Using this device configuration, the polymer semiconductors can be repeatedly interrogated with laminate/delaminate cycles under different amounts of tensile strain. From our obtained electrical characteristics, e.g., mobility, drain current, and on/off ratio, the strain limitation of semiconductors can be derived. With a facile soft contact lamination testing approach, we can thus rapidly identify potential candidates of semiconducting polymers for stretchable electronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700