用户名: 密码: 验证码:
Ultrafast Charge Transfer from CdSe Quantum Dots to p-Type NiO: Hole Injection vs Hole Trapping
详细信息    查看全文
文摘
Semiconductor quantum dot (QD) to metal oxide electron injection dynamics is well documented in the scientific literature. In contrast to that, not much is known so far about hole injection time scales in such systems. The current study fills this gap. We investigate photocathodes consisting of CdSe QDs and p-type NiO to study hole injection dynamics from the valence band of the QDs to NiO. The combination of two complementary techniques, ultrafast time-resolved absorption and fluorescence spectroscopies, enabled us to distinguish between hole trapping and injection. A kinetic component on the time scale of a few hundreds of picoseconds was identified as hole injection. By changing the size of the QDs, the driving force of the hole injection was tuned and we demonstrated that the hole injection rates are well described by the Marcus theory of charge transfer. In order to enhance the overall hole injection efficiency, we have passivated the CdSe QDs by a gradient ZnS shell. The core鈥搒hell QDs show significantly slower hole injection; still, since trapping was almost eliminated, the overall hole injection efficiency was greatly enhanced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700