用户名: 密码: 验证码:
Building 3D Layer-by-Layer Graphene鈥揋old Nanoparticle Hybrid Architecture with Tunable Interlayer Distance
详细信息    查看全文
文摘
The ability to construct self-assembled three-dimensional (3D) superstructures with desired functionality is not only of scientific curiosity but also crucial in the bottom-up nanofabrication of smart materials and devices. Here a facile solution-processable strategy for creating 3D layer-by-layer graphene鈥揼old nanoparticle architectures was developed in which cysteine molecules with amino groups were chemically grafted onto the surface of graphene oxide and then the cysteine thiol groups were attached to the surface of gold nanorods (GNRs) through strong covalent Au鈥揝 linkages. In this self-assembled structure, as revealed by transmission electron microscopy (TEM) and scanning electron microscope (SEM), it was confirmed that the graphene layers aligned in parallel fashion rather than randomly to each other by the lying down patterns of the GNRs, which also formed layers in parallel. Furthermore, spherical gold nanoparticles with different sizes were used to control the interlayer distance of the 3D hybrid structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700