用户名: 密码: 验证码:
Exciton Energy Transfer-Based Quantum Dot Fluorescence Sensing Array: 鈥淐hemical Noses鈥?for Discrimination of Different Nucleobases
详细信息    查看全文
文摘
A novel exciton energy transfer-based fluorescence sensing array for the discrimination of different nucleobases was developed through target nucleobase-triggered self-assembly of quantum dots (QDs). Four QD nanoprobes with different ligand receptors, including mercaptoethylamine, N-acetyl-l-cysteine, 2-dimethyl-aminethanethiol, and thioglycolic acid, were created to detect and identify nucleobase targets. These QDs served as both selective recognition scaffolds and signal transduction elements for a biomolecule target. The extent of particle assembly, induced by the analyte-triggered self-assembly of QDs, led to an exciton energy transfer effect between interparticles that gave a readily detectable fluorescence quenching and distinct fluorescence response patterns. These patterns are characteristic for each nucleobase and can be quantitatively differentiated by linear discriminate analysis. Furthermore, a fingerprint-based barcode was established to conveniently discriminate the nucleobases. This pattern sensing was successfully used to identify nucleobase samples at unknown concentrations and five rare bases. In this 鈥渃hemical noses鈥?strategy, the robust characteristics of QD nanoprobes, coupled with the diversity of surface functionality that can be readily obtained using nanoparticles, provides a simple and label-free biosensing approach that shows great promise for biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700