用户名: 密码: 验证码:
Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis
详细信息    查看全文
文摘
We report the controlled synthesis of NiCo layered double hydroxide (LDH) nanoplates using a newly developed high temperature high pressure hydrothermal continuous flow reactor (HCFR), which enables direct growth onto conductive substrates in high yield and, most importantly, better control of the precursor supersaturation and, thus, nanostructure morphology and size. The solution coordination chemistry of metal鈥揳mmonia complexes was utilized to synthesize well-defined NiCo LDH nanoplates directly in a single step without topochemical oxidation. The as-grown NiCo LDH nanoplates exhibit a high catalytic activity toward the oxygen evolution reaction (OER). By chemically exfoliating LDH nanoplates to thinner nanosheets, the catalytic activity can be further enhanced to yield an electrocatalytic current density of 10 mA cm鈥? at an overpotential of 367 mV and a Tafel slope of 40 mV dec鈥?. Such enhancement could be due to the increased surface area and more exposed active sites. X-ray photoelectron spectroscopy (XPS) suggests the exfoliation also caused some changes in electronic structure. This work presents general strategies to controllably grow nanostructures of LDH and ternary oxide/hydroxides in general and to enhance the electrocatalytic performance of layered nanostructures by exfoliation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700