用户名: 密码: 验证码:
Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles
详细信息    查看全文
文摘
Poor oxygen evolution reaction (OER) catalysis limits the efficiency of H2 production from water electrolysis and photoelectrolysis routes to large-scale energy storage. Despite nearly a century of research, the factors governing the activity of OER catalysts are not well understood. In this Perspective, we discuss recent advances in understanding the OER in alkaline media for earth-abundant, first-row, transition-metal oxides and (oxy)hydroxides. We argue that the most-relevant structures for study are thermodynamically stable (oxy)hydroxides and not crystalline oxides. We discuss thin-film electrochemical microbalance techniques to accurately quantify intrinsic activity and in situ conductivity measurements to identify materials limited by electronic transport. We highlight the dramatic effect that Fe cations鈥攁dded either intentionally or unintentionally from ubiquitous electrolyte impurities鈥攈ave on the activity of common OER catalysts. We find new activity trends across the first-row transition metals, opposite of the established ones, and propose a new view of OER on mixed-metal (oxy)hydroxides that illustrates possible design principles and applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700